The Arctic Winter Sea Ice Quadrupole Revisited
نویسندگان
چکیده
The dominant mode of Arctic sea ice variability in winter is often maintained to be represented by a quadrupole structure, comprising poles of one sign in the Okhotsk, Greenland, and Barents Seas and of opposing sign in the Labrador and Bering Seas, forced by the North Atlantic Oscillation. This study revisits this large-scale wintermode of sea ice variability usingmicrowave satellite and reanalysis data. It is found that the quadrupole structure does not describe a significant covariance relationship among all four component poles. The first empirical orthogonal mode, explaining covariability in the sea ice of the Barents, Greenland, and Okhotsk Seas, is linked to the Siberian high, while the North Atlantic Oscillation only exhibits a significant relationship with the Labrador Sea ice, which varies independently as the secondmode. The principal components are characterized by a strong low-frequency signal; because the satellite record is still short, these results suggest that statistical analyses should be applied cautiously.
منابع مشابه
The Early Winter Sea Ice Variability under the Recent Arctic Climate Shift*
This study reveals that sea ice in the Barents and Kara Seas plays a crucial role in establishing a new Arctic coupled climate system. The early winter sea ice before 1998 shows double dipole patterns over the Arctic peripheral seas. This pattern, referred to as the early winter quadrupole pattern, exhibits the anticlockwise sequential sea ice anomalies propagation from theGreenland Sea to the ...
متن کاملCold winter extremes in northern continents linked to Arctic sea ice loss
The satellite record since 1979 shows downward trends in Arctic sea ice extent in all months, which are smallest in winter and largest in September. Previous studies have linked changes in winter atmospheric circulation, anomalously cold extremes and large snowfalls in mid-latitudes to rapid decline of Arctic sea ice in the preceding autumn. Using observational analyses, we show that the winter...
متن کاملThe early twentieth century warming and winter Arctic sea ice
The Arctic has featured the strongest surface warming over the globe during the recent decades, and the temperature increase has been accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the early twentieth century warming (ETCW) during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investi...
متن کاملMethane excess in Arctic surface water- triggered by sea ice formation and melting
Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on m...
متن کاملGeographic muting of changes in the Arctic sea ice cover
[1] The seasonal cycle in Arctic sea ice extent is asymmetric. Its amplitude has grown in recent decades as the ice has retreated more rapidly in summer than in winter. These seasonal disparities have typically been attributed to different physical factors operating during different seasons. Here we show instead that the seasonal asymmetries in Arctic sea ice extent are a geometric consequence ...
متن کامل